Materials Characterisation of Half-**Heusler Compounds**

KID: 20250108

Abstract

Half-Heusler (HH) materials have gained significant attention for their unique combination thermoelectric efficiency, structural versatility, and potential applications in power generation and electronic devices. Characterising these materials at the atomic, electronic, and microstructural levels is essential for optimizing their properties for industrial applications. This article discusses various materials characterisation techniques employed for HH compounds, highlighting structure-property performance correlations and insights into enhancements.

1. Introduction

Half-Heusler (HH) compounds, typically described by the formula XYZ, where X and Y are transition or rare-earth metals and Z is a main-group element.1 2 HH compounds are a versatile class of intermetallics showing strong potential in thermoelectrics, spintronics, and power electronics. Despite their relatively simple crystal structure, HH materials can display complex transport behavior, often governed by subtle changes in phase composition, disorder, and grain boundary effects.3 4 5 To fully exploit the of HH functional capabilities compounds, materials characterisation comprehensive indispensable. includes This structural microstructural, electronic, and thermal analyses, which together inform the design, synthesis, and optimization of high-performance HH materials. In this article, we explore the key techniques used to characterize Half-Heusler materials and discuss their roles in advancing the functionality of these materials.

2. Structural Characterisation

2.1.X-ray Diffraction (XRD)

XRD remains the cornerstone technique for determining crystal structure, phase composition, and phase purity of HH materials. HH crystallizes in the MgAgAs-type structure (space group F-43m), characterised by a cubic unit cell with three interpenetrating face-centred cubic (FCC) sublattices. XRD analysis confirms the formation of the singlephase cubic structure and helps quantify secondary phases, which can severely degrade thermoelectric performance.⁶ Rietveld refinement provides precise lattice parameters and occupancy levels of atomic sites. Rietveld refinement is routinely employed to extract lattice parameters, site occupancies, and atomic displacement parameters, which are critical for assessing structural quality.7

3. Microstructural Characterisation 3.1.Electron Microscopy (SEM/TEM)

Scanning electron microscopy (SEM) reveals microstructural details such as surface morphology, grain boundaries, porosity, and secondary inclusions, which are important for understanding mechanical behaviour of the HH material.8

Backscattered electron imaging (BSE) enhances contrast, useful in detecting compositional inhomogeneities or impurity phases.9 Transmission electron microscopy (TEM) is employed for atomicscale imaging, especially in identifying grain boundaries, defect structures, and incoherent nanophases. High-resolution TEM (HRTEM) has revealed embedded secondary phases and stacking faults that affect transport properties in HH materials 8

4. Compositional Analysis

4.1.Energy-Dispersive X-ray Spectroscopy (EDS):

provides elemental homogeneity compositional stoichiometry across the sample and is typically integrated with SEM/TEM platforms.¹⁰ Understanding elemental distribution is critical for HH compounds, as slight deviations (often at the parts-per-thousand level) can lead to antisite defects or the formation of impurity phases. Elemental maps produced via EDS also reveal segregation or phase separation in doped HH systems.

5. Electronic Characterisation

Temperature-dependent measurements of the Seebeck coefficient (S) and electrical conductivity (o) are essential to evaluate thermoelectric performance. The thermoelectric performance of HH materials is typically expressed using the dimensionless figure of merit: $zT=S^2\sigma T/\kappa$. where S is the Seebeck coefficient, σ is the electrical conductivity, T is absolute temperature, and κ is total thermal conductivity (electronic + lattice). 11 12 Seebeck Coefficient (S) indicates the nature (n- or p-type) and magnitude of carrier diffusion. Electrical Conductivity (o) reflects carrier concentration and mobility, influenced by band structure and defect scattering. measurements yield carrier concentration and mobility, which are key to understanding electronic transport.18 In many HHs, degenerate semiconducting behavior is observed, with carrier concentrations in the range of $10^{19} - 10^{21}$ cm⁻³.

6. Phonon and Vibrational Studies

Understanding the phonon behaviour is crucial for engineering the thermal conductivity. Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy are used to probe vibrational modes.14 15 Shifts or broadening in Raman peaks often reflect disorder, doping, or anharmonicity, and each of which plays a role in phonon scattering. In combination with computational modelling, vibrational spectra can help identify mechanisms of phonon localization and suggest effective strategies for reducing the lattice thermal conductivity.

7. Thermal and Mechanical Characterisation

The advantageous features of HH materials are their mechanical robustness, which makes them a potential candidate for mid to high temperature applications, and also crucial in device integration.

Nanoindentation and Vickers hardness testing assess hardness, elastic modulus, and fracture toughness. These metrics also influence manufacturability and the stability of devices under mechanical stress.

Thermal aging studies and thermogravimetric analysis (TGA) assess the long-term stability of these materials. Laser Flash Analyzer (LFA) is used to measure the thermal diffusivity, which, combined with the material's density and specific heat and gives total thermal conductivity ().16 The total thermal conductivity ()includes lattice () and electronic () contributions. 11 12 Decomposing κ into its electronic and lattice components via the Wiedemann-Franz law helps in designing strategies (e.g., nanostructuring or alloying) to selectively suppress lattice thermal conductivity.17

8. Magnetic Characterisation:

Some HH compounds exhibit magnetic ordering, relevant for spintronic applications. Superconducting quantum interference device (SQUID) magnetometry or vibrating sample magnetometry (VSM) helps to measure the magnetic susceptibility, coercivity, and Curie temperatures. These properties are essential for applications in magnetic sensors and spin valves. 18

9. Chemical and Phase Analysis:

X-ray Photoelectron Spectroscopy (XPS) is essential for probing the chemical states of the constituent elements and detecting surface oxidation, particularly in air-exposed HH materials. It provides insight into bonding environments and valence states, which helps interpret electrical transport properties and catalytic activity and also helps confirm successful doping or detect surface oxidation, especially in air-sensitive HHs. of HH materials.¹⁹ While atom probe tomography (APT) offers 3D compositional mapping at atomic resolution and is increasingly used to detect nanoscale dopant segregation, precipitates, or solute clustering, which influence performance.20

10. Conclusion:

The development of high-performance Half-Heusler materials is intrinsically tied to the depth and precision of their characterisation. These characterisations are inherently multidisciplinary, requiring tools from crystallography, microscopy, spectroscopy, thermoelectric testing, magnetometry. As characterisation tools evolve, particularly with in situ and operando techniques, the pathway to optimizing HH materials for real-world applications will become increasingly precise and efficient.

References:

- Graf, T.; Felser, C.; Parkin, S. S. Simple Rules for the Understanding of Heusler Compounds. Prog. Solid State Chem. 2011, 39 (1), 1-50.
- Snyder, G. J.; Toberer, E. S. Complex Thermoelectric Materials. Nat. Mater. 2008, 7 (2), 105-114.
- Bos, J.-W. G.; Downie, R. A. Half-Heusler Thermoelectrics: A Complex Class of Materials. J. Phys. Condens. Matter 2014, 26 (43), 433201.
- Chen, R.; Kang, H.; Min, R.; Chen, Z.; Guo, E.; Yang, X.; Wang, T. Thermoelectric Properties of Half-Heusler Alloys. Int. Mater. Rev. 2024, 69 (2), 83-106. https://doi.org/10.1177/09506608231225613.
- Huang, L.; Zhang, Q.; Yuan, B.; Lai, X.; Yan, X.; Ren, Z. Recent Progress in Half-Heusler Thermoelectric Materials. Mater. Res. Bull. 2016, 76, 107112.

- https://doi.org/10.1016/j.materresbull.2015.11.32.
- J. Quinn, R.; G. Bos, J.-W. Advances in Half-Heusler Alloys for Thermoelectric Power Generation. Mater. Adv. 2021, 2 (19), 6246-6266. https://doi.org/10.1039/D1MA00707F.
- Rogl, G.; Grytsiv, A.; Gürth, M.; Tavassoli, A.; Ebner, C.; Wünschek, A.; Puchegger, S.; Soprunyuk, V.; Schranz, W.; Bauer, E.; Müller, H.; Zehetbauer, M.; Rogl, P. Mechanical Properties of Half-Heusler Alloys. Acta Mater. 2016, 107, 178–195. https://doi.org/10.1016/j.actamat.2016.01.031.
- · Ciesielski, K.; Gnida, D.; Borrmann, H.; Ramlau, R.; Prots, Y.; Szymański, D.; Grin, Y.; Kaczorowski, D. Structural, Thermodynamic and Magnetotransport Properties of Half-Heusler Compound HoPtSb. J. Alloys Compd. 2020, 829, 154467.
- Offernes, L.; Ravindran, P.; Seim, C. W.; Kjekshus, A. Prediction of Composition for Stable Half-Heusler Phases from Electronic-Band-Structure Analyses. J. Alloys Compd. 2008, 458 (1-2), 47-60.
- Gofryk, K.; Kaczorowski, D.; Plackowski, T.; Leithe-Jasper, A.; Grin, Yu. Magnetic and Transport Properties of Rare-Earth-Based Half-Heusler Phases R PdBi: Prospective Systems for Topological Quantum Phenomena. Phys. Rev. 84 (3)https://doi.org/10.1103/PhysRevB.84.035208.
- Gayner, C.; Kar, K. K. Recent Advances in Thermoelectric Materials. Prog. Mater. Sci. 2016, 83, 330-382.
- Rosi, F. D. Thermoelectricity and Thermoelectric Power Generation. Solid-State Electron. 1968, 11 (9), 833-868.
- Shekhar, C.; Kumar, N.; Grinenko, V.; Singh, S.; Sarkar, R.; Luetkens, H.; Wu, S.-C.; Zhang, Y.; Komarek, A. C.; Kampert, E.; Skourski, Y.; Wosnitza, J.; Schnelle, W.; McCollam, A.; Zeitler, U.; Kübler, J.; Yan, B.; Klauss, H.-H.; Parkin, S. S. P.; Felser, C. Anomalous Hall Effect in Weyl Semimetal Half-Heusler Compounds RPtBi (R = Gd and Nd). Proc. Natl. Acad. Sci. 2018, 115 (37), 9140–9144. https://doi.org/10.1073/pnas.1810842115.
- Aviziotis, I. G.; Manasi, A.; Ntziouni, A.; Gakis, G. P.; Trompeta, A.-F. A.; Li, X.; Dong, H.; Charitidis, C. A. Growth of Carbon Nanofibers and Carbon Nanotubes by Chemical Vapour Deposition on Half-Heusler Alloys: A Computationally Driven Experimental Investigation. Materials2024, 17 (13), 3144.
- Berthomieu, C.; Hienerwadel, R. Fourier Transform Infrared (FTIR) Spectroscopy. Photosynth. Res. 2009, 101 (2-3), 157-170. https://doi.org/10.1007/s11120-009-9439-x.
- Gelbstein, Y.; Tal, N.; Yarmek, A.; Rosenberg, Y.; Dariel, M. P.; Ouardi, S.; Balke, B.; Felser, C.; Köhne, M. Thermoelectric Properties of Spark Plasma Sintered Composites Based on TiNiSn Half-Heusler Alloys. J. Mater. Res. 2011, 26 (15), 1919-1924.
- Al-Fartoos, M. M. R.; Roy, A.; Mallick, T. K.; Tahir, A. A. Advancing Thermoelectric Materials: A Comprehensive Review Exploring the Significance of One-Dimensional Nano Structuring. Nanomaterials 2023, 13 (13), 2011.
- Stephen, J. Magnetic and Transport Properties of Electronically Spin Polarised Double Perovskites and Heusler Intermetallics. PhD Thesis, Open Access Te Herenga Waka-Victoria University of Wellington, 2014. https://openaccess.wgtn.ac.nz/articles/thesis/Magnetic_and _transport_properties_of_electronically_spin_polarised_ double_perovskites_and_Heusler_intermetallics/17142857 (accessed 2025-06-20).
- Ślebarski, A.; Jezierski, A.; Lütkehoff, S.; Neumann, M. Electronic Structure of X 2 ZrSn - and X ZrSn - Type Heusler Alloys with X = Co or Ni. Phys. Rev. B 1998, 57 (11), 6408-6412. https://doi.org/10.1103/PhysRevB.57.6408.
- (20) He, H.; Halpin, J. E.; Popuri, S. R.; Daly, L.; Bos, J.-W. G.; Moody, M. P.; MacLaren, D. A.; Bagot, P. A. Atom Probe Tomography of a Cu-Doped TiNiSn Thermoelectric Material: Nanoscale Structure and Optimization of Analysis Conditions. Microsc. Microanal. 2022, 28 (4), 1340-1347.

Mr Ashish Priyam Goswami

MTech graduate from the Department of Materials Science And Metallurgical Engineering IIT Hyderabad